Inorg. Chem. **2005**, 44, 6146−6148

Peroxidase Activity of the Hemeoctapeptide N-Acetylmicroperoxidase-8

Helder M. Marques*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa

Received May 27, 2005

The pH dependence of the peroxidase activity (guaiacol assay) of the ferric hemeoctapeptide N-acetylmicroperoxidase-8 (N-AcMP8) was studied under conditions where formation of the Compound I analogue of the peroxidase enzymes is rate limiting. The pH profile of the reaction rate is consistent with a mechanism where both H_2O_2 and HO_2^- can displace H_2O coordinated trans to neutral His but where the hydroxo complex of the hemepeptide (OH^-) trans to His) is kinetically inert. At pH > 11, where the proximal His ligand of Fe(III) ionizes to form a histidinate, the hydroxo complex (OH⁻ trans to His⁻) becomes kinetically labile. A comparison of ΔH^{\sharp} and ΔS^{\sharp} values for the reaction of H₂O₂ and HO₂⁻, obtained from the temperature dependence of the rate constants, with values for CN^- and cysteine reported previously, shows that the activation parameters depend on the identity of the incoming ligand. This suggests that ligand substitution at Fe(III) in N-AcMP8 proceeds through an interchange mechanism.

The ferric heme-containing peroxidase enzymes catalyze the oxidation of organic substrates by H_2O_2 .¹⁻³ A typical example is horseradish peroxidase (HRP), which catalyzes the oxidative coupling of phenols.⁴ H_2O_2 reacts with the enzyme to form the transient intermediate Compound 0 (Cmpd 0) in which H_2O_2 (but probably $HO_2^{-})^5$ is coordinated to $Fe(III)$.⁶ The protein is then rapidly oxidized to two oxidizing equivalents above the ground state (Compound I, Cmpd I), forming, with release of H_2O , an oxyferryl species and a porphyrin radical. Cmpd I is reduced by the substrate (such as a phenol) in two one-electron-transfer steps to form, first, Compound II (Cmpd II), which contains the oxyferryl moiety, and then the resting enzyme.

Protoeolytic digestion of cytochrome *c* produces a series of hemepeptides called the microperoxidases (MPXs) that

- (1) Welinder, K. G. *Curr. Opin. Struct. Biol.* **1992**, *2*, 388.
- (2) Dunford, H. B. *Xenobiotica* **1995**, *25*, 725.
- (3) Veitch, N. C. *Phytochemistry* **2004**, *65*, 249.
- (4) Gajhede, M. In *Handbook of Metalloproteins*; Messerschmidt, A., Huber, R., Poulos, T. L., Wieghardt, K., Eds.; John Wiley and Sons: Chichester, 2001; Vol. 1, p 195.
- (5) Baldwin, D. A.; Marques, H. M.; Pratt, J. M. *J. Inorg. Biochem.* **1987**, *30*, 203.
- (6) Poulos, T. L.; Kraut, J. *J. Biol. Chem.* **1980**, *255*, 10322.
-

retain a number, *X*, of the amino acid residues of the parent protein, including the proximal His;⁷ the other axial coordination site is occupied by H_2O . They have proved to be useful models for some hemoproteins including the peroxidases, $5,8-10$ the cytochromes P450, $11,12$ and the oxidative dehalogenating enzymes.^{13,14}

Adams^{15,16} studied the oxidation of ATBS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate)) with H_2O_2 catalyzed by the hemeoctapeptide, MP8, under conditions where formation of Cmpd I was rate limiting and found that the kinetics were unaffected by addition of Br⁻ or formate, both powerful scavengers of hydroxyl radical. This is consistent with a mechanism that proceeds through heterolytic cleavage of the $O-O$ bond to produce a Cmpd I analogue and $H₂O$. However, there is a competitive pathway in which H_2O_2 irreversibly degrades the porphyrin, as previously reported.5,17 The Cmpd 0 and Cmpd I analogues of MP8 have been characterized by rapid-scan UV -vis spectrophotometry.¹⁸

Under conditions where formation of Cmpd I is rate limiting,⁵ the rate of oxidation of *o*-methoxyphenol (guaiacol, Gc) catalyzed by MP8 increases with pH between 6 and 9 which, it was suggested, is evidence that Fe(III) reacts with $HO_2^{\,-\,5,17}$ but no explanation was advanced for the apparent independence of the rate on pH below 6. A more comprehensive investigation of the peroxidase activity of MP8 has

- (7) Adams, P. A.; Baldwin, D. A.; Marques, H. M. In *Cytochrome c: A Multidisciplinary Approach*; Scott, R. A., Mauk, A. G., Eds.; University Science: Mill Valley, CA, 1996; p 635.
- (8) Traylor, T. G.; Xu, F. *J. Am. Chem. Soc.* **1990**, *112*, 178.
- (9) Adams, P. A.; Goold, R. D. *J. Chem. Soc., Chem. Commun.* **1990**, 97.
- (10) Cunningham, I.; Bachelor, J.; Pratt, J. *J. Chem. Soc., Perkin Trans. 2* **1991**, 1839.
- (11) Adams, P. A.; Milton, R. C.; Silver, J. *BioMetals* **1994**, *7*, 217.
- (12) Spee, J. H.; Boersma, M. G.; Veeger, C.; Samyn, B.; van Beeumen, J.; Warmerdam, G.; Canters, G. W.; van Dongen, W. M.; Rietjens, I. M. *Eur. J. Biochem.* **1996**, *241*, 215.
- (13) Osman, A. M.; Boeren, S.; Boersma, M. G.; Veeger, C.; Rietjens, I. M. *Proc. Natl. Acad. Sci., U.S.A.* **1997**, *94*, 4295.
- (14) Osman, A. M.; Boeren, S.; Veeger, C.; Rietjens, I. M. *Chem. Biol. Interact.* **1997**, *104*, 147.
- (15) Adams, P. A.; Goold, R. D. *J. Chem. Soc., Chem. Commun.* **1990**, 97.
- (16) Adams, P. A. *J. Chem. Soc., Perkin Trans. 2* **1990**, 1407.
- (17) Baldwin, D. A.; Marques, H. M.; Pratt, J. M. *FEBS Lett.* **1985**, *183*, 309.
- (18) Primus, J. L.; Grunewald, S.; Hagedoorn, P.-L.; Albrecht-Gary, A.- M.; Mandon, D.; Veeger, C. *J. Am. Chem. Soc.* **2002**, *124*, 1214.

6146 Inorganic Chemistry, Vol. 44, No. 18, 2005 10.1021/ic050856a CCC: \$30.25 © 2005 American Chemical Society Published on Web 08/06/2005

^{*} To whom correspondence should be addressed. E-mail: hmarques@aurum.chem.wits.ac.za.

been reported more recently.¹⁹ Its dependence on pH presents as a bell-shaped curve, skewed to high pH, with an apparent maximum at pH 10. There are two apparent pK_a 's at 8.9 and 10.6, obtained by curve fitting; no attempt was made to suggest a plausible mechanism that would account for the pH dependence.

A problem with MP8 is its propensity to aggregate in aqueous solution, not only by $\pi-\pi$ aggregation of the porphyrins, but also by intermolecular coordination of Fe- (III) by the N-terminal amino group of the peptide. $20,21$ The interpretation of kinetic data may be problematic because of these aggregation effects.

Far better characterized is the solution behavior of *N*-Ac-MP8 where the terminal amino group of MP8 is protected by acetylation.²¹ The species is monomeric up to 30 μ M in aqueous solution at an ionic strength of 0.1 M. Increasing ionic strength promotes aggregation.²¹

We have now undertaken a study of the peroxidase activity of N -Ac-MP8 using the oxidation of guaiacol by H_2O_2 to produce a tetraguaiacol as assay²² under conditions ([Gc] $=$ 15 mM) where formation of Cmpd I is rate limiting.⁵ Because the porphyrin is irreversibly oxidized by H_2O_2 ^{5,17} some curvature in the absorbance vs time trace at 470 nm occurs after some time; the rate of the reaction was therefore determined from the initial slope of the absorbance-time trace obtained with a HiTech SF51 stopped-flow spectrophotometer on mixing equal volumes of a solution containing *N*-Ac-MP8 (0.1-1.0 μ M), buffer (TRIS/HCl, phosphate or CAPS), Gc, and ionic strength adjustor (NaClO₄, $\mu = 0.1$ M) with one containing H_2O_2 only (to preclude decomposition at high $pH²³$) prepared by dilution of a freshly prepared stock solution which was standardized spectrophotometrically $(\epsilon_{240} = 39.4 \text{ M}^{-1})^{24}$ Under these conditions, rate $= 4(\text{d}A/\text{d}t)/\epsilon_{120}$ and it is known that $\epsilon_{120} = 26.6 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$ 22 $\frac{dt}{\epsilon_{470}} = 26.6 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$.²²
The observed second order rate constant μ^{II} was deter The observed second-order rate constant, $k_{\text{obs}}^{\text{II}}$, was determined by dividing the slope of a plot of rate vs $[H_2O_2]$ (which was varied by at least 10-fold) by [*N-*Ac-MP8].

 $k_{\rm obs}^{\rm II}$ (Table S1 of the Supplementary Information) varies with pH as shown in Figure 1. The results are in reasonable agreement with those reported by Yeh et al.¹⁹ To explain the pH profile of $k_{\text{obs}}^{\text{II}}$, we took the following into consideration. Below pH 7, k_{obs}^{II} is virtually independent of pH. It is known that the axial H2O ligand in aqua-*N-*AcMP8 (abbreviated as $His-Fe-H₂O$, which must be displaced by either H_2O_2 (or HO_2^-) in the first step of the reaction, ionizes with $pK_{Fe} = 9.59^{21}$ to form the kinetically inert^{25,26} hydroxo complex, His-Fe-OH⁻. At high pH, the proximal His ligand of *N*-Ac-MP8 ionizes with $pK_{\text{His}} = 12.71^{21}$ to form a

- (19) Yeh, H.-C.; Wang, J.-S.; Su, Y. O.; Lin, W.-Y. *J. Biol. Inorg. Chem.* **2001**, *6*, 770.
- (20) Aron, J.; Baldwin, D. A.; Marques, H. M.; Pratt, J. M.; Adams, P. A. *J. Inorg. Biochem.* **1986**, *27*, 227.
- (21) Munro, O. Q.; Marques, H. M. *Inorg. Chem.* **1996**, *35*, 3752.
- (22) Chance, B.; Maehly, A. C. *Methods Enzymol.* **1965**, *2*, 764.
- (23) Cotton, F. A.; Wilkinson, G. *Ad*V*anced Inorganic Chemistry*; John Wiley and Sons: New York, 1988.
- (24) Nelson, D. P.; Kiesow, L. A. *Anal. Biochem.* **1972**, *39*, 474.
- (25) Marques, H. M.; Baldwin, D. A.; Pratt, J. M. *J. Inorg. Biochem.* **1987**, *29*, 77.
- (26) Marques, H. M.; Rousseau, A. *Inorg. Chim. Acta* **1996**, *248*, 115.

Figure 1. Dependence of the second-order rate constant for formation of Cmpd I on reaction of H_2O_2 during the oxidation of guaiacol catalyzed by *N-*Ac-MP8. Solid circles from ref 19. The mechanism proposed is shown in Scheme 1. The k_1 (---) and k_2 (\cdots) pathways are for the reaction of the aqua-hemepeptide with H_2O_2 and HO_2^- , respectively; the k_3 pathway $(- \cdot - \cdot)$ is for the reaction of HO_2 ⁻ with the hydroxo-histidinate hemepeptide.

Scheme 1. Mechanism Proposed to Explain the pH Dependence of the Second-Order Rate Constant for Formation of Cmpd I (Figure 1)

histidinate, His^- -Fe-OH⁻ (Scheme 1); this, by contrast, is kinetically labile.^{25,26}

Both H_2O_2 and HO_2^- react with $His-Fe-H_2O$ to form a
and 0 analogue. $His-Fe-O.H^-$ or $His-Fe-O.H$, with Cmpd 0 analogue, $His-Fe-O₂H⁻$ or $His-Fe-O₂H₂$ with rate constants, respectively, k_1 and k_2 , but His-Fe-OH⁻ is assumed to be kinetically inert. If $k_1 \leq k_2$ (H₂O₂ is a poorer nucleophile than HO_2^- toward Fe(III)) at pH $\ll pK_{H_2O_2}$ and $pH \ll pK_{H_2O_2}$ and is independent of $pH \Delta g$ pH pH $\ll pK_{\text{Fe}}$, $k_{\text{obs}}^{\text{II}} = k_1$ and is independent of pH. As pH
increases $k_{\text{obs}}^{\text{II}}$ abould increase and reach a maximum value increases, k_{obs}^{II} should increase and reach a maximum value $= k₂$. However, because His-Fe-OH⁻ is inert, as we showed to be the case for the reaction of *N*-Ac-MP8 with cysteine²⁵ and with cyanide,²⁶ k_{obs}^{II} should decrease as pH increases above p K_{Fe} . As the operating pH approaches p K_{His} , $k_{\text{obs}}^{\text{II}}$ should again increase as labile $His^- - Fe-OH^-$ is formed and the k_3 pathway becomes important. As shown in Figure 1, this is indeed the observed dependence of k_{obs}^{II} on pH.

It is readily shown that the macroscopic rate constant k_{obs}^{II} is related to the microscopic rate constants k_i , $i = 1, 2$, or 3, and the various acid dissociation constants by eq 1. The experimental data were fitted, using

COMMUNICATION

$$
k_{\text{obs}}^{\text{II}} = k_1/(1 + 10^{\text{pH} - \text{pK}_{\text{H2O2}}})(1 + 10^{\text{pH} - \text{pK}_{\text{Fe}}}) + k_2/(1 + 10^{\text{pH} - \text{pK}_{\text{Fe}}}) + k_3/(1 + 10^{\text{pK}_{\text{His}} - \text{pH}})
$$
(1)

standard nonlinear least-squares methods, to eq 1 as objective function and k_i , p K_{Fe} , p $K_{\text{H}_2\text{O}_2}$, and p K_{His} as variables. The solid line in Figure 1 is the best fit to the data; the contributions of the three pathways to k_{obs}^{II} are shown as broken lines.

We found $k_1 = 3 \pm 1 \times 10^3$ M⁻¹ s⁻¹, $k_2 = 1.9 \pm 0.4 \times$
 $k_1 = 7$ and $k_2 = 4 + 1 \times 10^4$ M⁻¹ s⁻¹ while $nK_2 =$ 10^7 M⁻¹ s⁻¹, and $k_3 = 4 \pm 1 \times 10^4$ M⁻¹ s⁻¹, while p*K*_{Fe} =
9.2 + 0.1, p*K_{Fe}* = 11.38 + 0.06, and p*K_m* = 12.6 + 0.4 9.2 ± 0.1 , $pK_{H_2O_2} = 11.38 \pm 0.06$, and $pK_{His} = 12.6 \pm 0.4$. These kinetically determined acid dissociation constants are in reasonable agreement with values of $9.59²¹$, $11.8²⁷$ and $12.71²¹$ respectively, determined previously either spectrophotometrically or potentiometrically.

The temperature dependence of k_1 and k_2 were determined at five temperatures at pH 6.0 (10-35 $^{\circ}$ C), where only the k_1 pathway is important, and at pH 10.0 (5-25 °C), where only the k_2 pathway is important (Table S2). A plot of ln- $(k_i h / k_B T)$, where $i = 1$ or 2, *h* is the Planck constant, and k_B is the Boltzman constant, against T^{-1} gave good straight lines from which ΔH^{\ddagger} and ΔS^{\ddagger} could be determined from the slope and intercept, respectively (Figure S1). The values of k_1 are independent of pH at pH 6.0 ; those of k_2 were corrected for pK_{Fe} and $pK_{H_2O_2}$ to give values that are independent of pH and refer specifically to the reaction of HO_2^- with N-Fe-
H-O We find $\Delta H^{\dagger} = 35.7 \pm 1.0$ and 37.3 ± 1.4 kJ mol⁻¹ H₂O. We find $\Delta H^{\dagger} = 35.7 \pm 1.0$ and 37.3 \pm 1.4 kJ mol⁻¹ for k_1 and k_2 , respectively, while the values of ΔS^* are -59 \pm 3 and 18 \pm 5 J K⁻¹ mol⁻¹, respectively. Thus, the enthalpies of activation for reaction of H_2O_2 and HO_2^- with ^N-Fe-H2O are similar (and not dissimilar to the values for the reaction of the hemepeptide with CN^- anion, 39 kJ mol^{-1,28} or the zwitterionic (thiol) form of cysteine,²⁶ 34.6 $kJ \text{ mol}^{-1}$) while the entropy of activation is negative for the reaction of the hemepeptide with neutral H_2O_2 but positive for its reaction with anionic HO₂⁻. The values of ∆*S*[‡] for reaction with CN^- and cysteine are 92 and -16.4 J K⁻¹ mol^{-1} , respectively.^{26,28}

There are small but systematic differences in ∆*H*⁺ values and very significant differences in ∆*S*^{$±$} values. Values of ∆*H*^{$±$} are smaller for the neutral ligands H_2O_2 and cysteine than for the anionic ligands HO_2^- and CN^- , while conversely, ΔS^{\dagger} values are larger, and there appears to be a compensation effect between the two parameters (Figure S3). If the ratedetermining step was dissociation of H₂O, then ∆*H*^{\pm} and ∆*S*^{\pm} values should be independent of the identity of the incoming ligand, L. There therefore appears to be nucleophilic participation of L in the transition state.

We have noted such compensation effects in the ligandsubstitution reactions at Co(III) in aquacobalamin where there is definitive evidence for a dissociative interchange mechan- $\lim_{n \to \infty}$ We have interpreted this to mean that, as the extent of nucleophilic participation of L in the transition state increases, ΔH^* decreases as bond making between L and the metal compensates for bond breaking, but this is offset by a decrease in ΔS [‡] because of loss of freedom of L. Such behavior is characteristic of a weak interaction in solution.³² However, it must be emphasized that this interpretation is tentative and further data with a wider variety of ligands are required before a more definitive conclusion can be reached.

Acknowledgment. This work was supported by the National Research Foundation, Pretoria, and the University of the Witwatersrand.

Supporting Information Available: Primary kinetic data, temperature dependence of rate constants, Eyring plots, and plot of the compensation effect between ΔH^* and ΔS^* . This material is available free of charge via the Internet at http://pubs.acs.org.

IC050856A

- (29) Marques, H. M.; Bradley, J. C.; Campbell, L. A. *J. Chem. Soc., Dalton Trans.* **1992**, 2019.
- (30) Meier, M.; van Eldik, R. *Inorg. Chem.* **1993**, *32*, 2635.
- (31) Marques, H. M.; Knapton, L.; Zou, X.; Brown, K. L. *J. Chem. Soc., Dalton Trans.* **2002**, 3195.

⁽²⁷⁾ Smith, R. M.; Martell, A. E. *Critical Stability Constants*; Plenum: New York, 1976; Vol. 1.

⁽²⁸⁾ Smith, M. C.; McLendon, G. *J. Am. Chem. Soc.* **1980**, *102*, 5666.

⁽³²⁾ Searl, M. S.; Westwell, M. S.; Williams, D. H. *J. Chem. Soc., Perkin Trans. 2* **1995**, *2*, 141.